The use of quartz patch pipettes for low noise single channel recording.
نویسندگان
چکیده
Quartz has a dissipation factor of approximately 10(-4), which is an order of magnitude less than that of the best glasses previously used to fabricate patch pipettes; it's dielectric constant of 3.8 is also lower than that of other glasses. On the basis of these electrical characteristics it is expected that patch pipettes pulled from quartz tubing will produce significantly less noise than pipettes made from other glasses. Our work confirms these expectations and we describe theoretical and practical aspects of the use of quartz pipettes for single channel patch voltage clamp measurements. Methods for pulling quartz pipettes with a laser-based puller and coating them with low-loss elastomers are discussed, as are precautions that are necessary to achieve low noise recordings. We have shown that quartz pipettes can be pulled from tubing with outer diameter to inner diameter ratios as large as 3 and a method of applying heavy elastomer coatings all the way to the tip of pipettes is presented. Noise sources arising from the pipette and its holder are described theoretically, and it is shown that measured noise is in good agreement with such predictions. With low noise capacitive feedback electronics, small geometry holders, and thick-walled quartz pipettes coated with low-loss elastomers we have been routinely able to achieve noise of 100 fA rms or less in a 5-kHz bandwidth with real cell patches and a pipette immersion depth of approximately 2 mm. On occasion we have achieved noise as low as 60 fA rms in this bandwidth.
منابع مشابه
Pressure polishing: a method for re-shaping patch pipettes during fire polishing.
The resolution of patch-clamp recordings is limited by the geometrical and electrical properties of patch pipettes. The ideal whole-cell patch pipette has a blunt, cone-shaped tip and a low resistance. The best glasses for making patch pipettes are low noise, low capacitance glasses such as borosilicate and aluminasilicate glasses. Regrettably, nearly all borosilicate glasses form pipettes with...
متن کاملPressure-polishing pipettes for improved patch-clamp recording.
Pressure-polishing is a method for shaping glass pipettes for patch-clamp recording. We first developed this method for fabricating pipettes suitable for recording from small (<3 m) neuronal cell bodies. The basic principal is similar to glass-blowing and combines air pressure and heat to modify the shape of patch pipettes prepared by a conventional micropipette puller. It can be applied to so-...
متن کاملCleaning patch-clamp pipettes for immediate reuse
Patch-clamp recording has enabled single-cell electrical, morphological and genetic studies at unparalleled resolution. Yet it remains a laborious and low-throughput technique, making it largely impractical for large-scale measurements such as cell type and connectivity characterization of neurons in the brain. Specifically, the technique is critically limited by the ubiquitous practice of manu...
متن کاملVoltage-induced membrane displacement in patch pipettes activates mechanosensitive channels.
The patch-clamp technique allows currents to be recorded through single ion channels in patches of cell membrane in the tips of glass pipettes. When recording, voltage is typically applied across the membrane patch to drive ions through open channels and to probe the voltage-sensitivity of channel activity. In this study, we used video microscopy and single-channel recording to show that prolon...
متن کاملThe power of single channel recording and analysis: its application to ryanodine receptors in lipid bilayers.
1. Since the inception of the patch-clamp technique, single-channel recording has made an enormous impact on our understanding of ion channel function and its role in membrane transport and cell physiology. 2. However, the impact of single-channel recording methods on our understanding of intracellular Ca2+ regulation by internal stores is not as broadly recognized. There are several possible r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 65 4 شماره
صفحات -
تاریخ انتشار 1993